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ABSTRACT: 
The major goal of this paper is to extract exact travelling wave solutions and investigate the effects the 
fractional parameter on the dynamic response of soliton waves of four-time beta fractional Boussinesq-
like equations. Sine-cosine method has been used to achieve explicit soliton solutions of these equations 
that emerged in coastal and ocean engineering. The obtained solutions have been studied in the form of 
hyperbolic and trigonometric functions. The behavior of some of the soliton solutions are demonstrated 
via 2D and 3D graphs. As a result of the fractional effects, physical changes are observed. The obtained 
results show that the proposed method is more convenient, powerful and efficient than other analytical 
approaches. The extracted results might improve our understanding of how waves propagate and could 
be beneficial to coastal and ocean engineering as well as other fields. 
Keywords: Sine-cosine method; The Boussinesq- like equations; Time beta fractional derivative; the exact 
solutions.

1. INTRODUCTION

Mostly natural phenomena occurring in the 
universe are interpreted by nonlinear differential 
equations of integer order as well as non-integer 
order. Nonlinear fractional differential equations 
(NFDEs) respond promptly and effectively in a 
variety scientific and engineering fields, 
including dynamical systems, electromagnetic, 
technology, fusion plasma, viscoelastic, biology, 
signal processing, electrochemical, optical fiber, 
oceanography, solid state physics, geochemistry, 
finance, among others. Many intriguing aspects 
of fractional calculus and flexibility of fractional 
theory have captivated the attention of many 
researchers (Sadiya et al. 2022; Khantun et al., 
2022). 
Fractional derivatives are defined in several 
ways, including conformable derivatives (Khalil 
et al., 2014), Atangana-Baleanu derivatives 
(Atangana and Baleanu, 2016), beta derivatives 
(Yepez-Martinez et al., 2018; Atangana et al., 
2016), M-truncated derivative (Sousa et al., 

2018), and Modified RL fractional derivatives 
(Jumarie, 2009). A fractional derivative can have a 
variety of properties, so that it is possible to use the 
one that is most suitable for the problem at hand. In 
fact, the study of fractional derivative operators is a 
popular topic. A lot of research has been done in this 
area, leading to an excessive number of findings e.g. 
see in (Ghanbari and Baleanu, 2020; Khater and 
Ghanbari, 2021; Ghanbari, 2019; Ghanbari et al., 
2019). 
The areas that focus on the examination of wave 
patterns in the physical world are fascinating since 
they address an extremely scientific and developed 
idea of soliton waves. The soliton wave is an 
important nonlinear phenomenon. Solitons offer an 
intriguing perspective on nonlinear physical 
processes. Finding solitons of nonlinear phenomena 
has recently gained popularity among mathematicians 
and scientists. The primary advantage of soliton 
solutions is the fact that they can be used for 
evaluation equations with various kind of 
nonlinearities that are both integrable and non-
integrable. The exact soliton solutions of fractional 
differential equations (FDEs) has been crucial in 
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many kinds of physical science research. 
Consequently, several approaches have been 
devised for computing FDEs solutions. Among 
them are: the extended tanh-function method 
(Zaman et al., 2022a, b), generalized (𝐺𝐺

′

𝐺𝐺
)-

expansion method (Uddin et al., 2022), 
modified F- expansion method (Ahmad et al., 
2023), Sardar sub equation method (Ali et al., 
2023), improved F-expansion method (Akram et 
al., 2023) extended simple equation method 
(Ahmad et al., 2023), unified method (Ali et al., 
2023) and so on. 
In this paper, we utilize the Sine-cosine 
technique introduced by Wazwaz (2004) to 
derive a set of new exact solutions for four 
distinct types of time beta fractional Boussinesq-
like equations. For further context, relevant 
works include those by (Wazwaz, 2012), Elsami 
et al. (2014), Darvishi et al. (2017), Darvishi et 
al. (2018) and Osman (2019), each contributing 
to the understanding and development of this 
approach. The equations under consideration are 
expressed in the following forms: 

𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − 𝑢𝑢𝑥𝑥𝑥𝑥 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥)𝑥𝑥 = 0,                 

(1)  
𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − 𝑢𝑢𝑥𝑥𝑥𝑥 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝐷𝐷𝑡𝑡𝑡𝑡

2𝛽𝛽𝑢𝑢𝑥𝑥)𝑥𝑥 = 0,                                 
(2) 

𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − 𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢𝑥𝑥 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝐷𝐷𝑡𝑡
𝛽𝛽𝑢𝑢𝑥𝑥𝑥𝑥)𝑥𝑥 = 0,                                                                                   

(3) 
𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥)𝑥𝑥 = 0.         

(4) 
Where 𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢 is the time  𝛽𝛽 − fractional
derivative of 𝑢𝑢 (Atangana’s comformable) order 
0 < 𝛽𝛽 < 1 in time 𝑡𝑡 > 0,𝑢𝑢𝑥𝑥 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, 𝑎𝑎𝑎𝑎𝑎𝑎  𝑢𝑢𝑥𝑥𝑥𝑥 =

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

. 
Eq. (1) includes the fourth spatial derivative 
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥and the dissipative term𝑢𝑢𝑥𝑥𝑥𝑥. In Eq. (2), 
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is replaced by a mixed spatial-temporal 
term.𝐷𝐷𝑡𝑡𝑡𝑡

2𝛽𝛽𝑢𝑢𝑥𝑥𝑥𝑥. In Eq. (3), 𝑢𝑢𝑥𝑥𝑥𝑥 is replaced
by𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 is replaced by a spatial-
temporal term𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢𝑥𝑥𝑥𝑥. Lastly, Eq. (4) lacks the
dissipative term  𝑢𝑢𝑥𝑥𝑥𝑥. 
These equations (1)-(4) are non-integrable and 
are used as models in ocean and coastal sciences 
when  𝛽𝛽 = 1. Some of these equations are 

employed in wave modeling and mathematical 
modeling of tidal oscillations.  
This paper is structured as follows: A brief definition 
and properties of beta fractional derivative are given 
in section 2. Section 3 provides a detailed explanation 
of the Sine-cosine method. Section 4 discusses the 
application of the Sine-cosine method to the time 
𝛽𝛽 −fractional Boussinesq-like equations represented 
by equations (1)-(4) respectively. Section 5 offers a 
physical interpretation of some of the solutions 
obtained. Finally, Section 6 summarizes the main 
conclusions drawn from the study. 

2. PROPERTIES OF BETA DERIVATIVE

Some properties of the Beta derivative are given 
using the following definition and theorem: 
Definition (2.1), (Atangana et al., 2016):  

𝐷𝐷𝑡𝑡
𝛽𝛽�𝑢𝑢(𝑡𝑡)�

= lim
𝜀𝜀→0

𝑢𝑢 �𝑡𝑡 + 𝜀𝜀 �𝑡𝑡 + 1
Γ(𝛽𝛽)�

1−𝛽𝛽
� − 𝑢𝑢(𝑡𝑡)

𝜀𝜀
, 

,  
Where   Γ(𝛽𝛽) = ∫ 𝑡𝑡𝛽𝛽−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑,    0 < 𝛽𝛽 < 1.∞

0  
and 

𝐷𝐷𝑡𝑡𝛽𝛽�𝑢𝑢(𝑡𝑡)� = 𝑑𝑑𝛽𝛽𝑢𝑢(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛽𝛽

. 
. 

Theorem: (2.1 ) Let 𝑢𝑢(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) be 𝛽𝛽 −
 differentiable functions, for all 𝛽𝛽 ∈ (0,1) and 𝑡𝑡 > 0. 
Then  

(a) 𝐷𝐷𝑡𝑡
𝛽𝛽(𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝑏𝑏𝑏𝑏(𝑡𝑡)) = 𝑎𝑎𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢(𝑡𝑡) +

𝑏𝑏𝐷𝐷𝑡𝑡
𝛽𝛽𝑣𝑣(𝑡𝑡),∀ 𝑎𝑎, 𝑏𝑏 ∈ ℝ ,

(b)𝐷𝐷𝑡𝑡
𝛽𝛽�𝑢𝑢(𝑡𝑡). 𝑣𝑣(𝑡𝑡)� =

𝑢𝑢(𝑡𝑡)𝐷𝐷𝑡𝑡
𝛽𝛽�𝑣𝑣(𝑡𝑡)� + 𝑣𝑣(𝑡𝑡)𝐷𝐷𝑡𝑡

𝛽𝛽�𝑢𝑢(𝑡𝑡)�,

(c) 𝐷𝐷𝑡𝑡
𝛽𝛽 �𝑢𝑢(𝑡𝑡)

𝑣𝑣(𝑡𝑡)� =

𝑣𝑣(𝑡𝑡)𝐷𝐷𝑡𝑡
𝛽𝛽�𝑢𝑢(𝑡𝑡)�−𝑢𝑢(𝑡𝑡)𝐷𝐷𝑡𝑡

𝛽𝛽�𝑣𝑣(𝑡𝑡)�
𝑣𝑣(𝑡𝑡)2 , 

(d) 𝐷𝐷𝑡𝑡
𝛽𝛽(𝑘𝑘) = 0, where 𝑘𝑘 ∈ ℝ,

(e) 𝐷𝐷𝑡𝑡
𝛽𝛽(𝑢𝑢(𝑡𝑡) = �𝑡𝑡 + 1

Γ(𝛽𝛽)�
1−𝛽𝛽 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
 . 

Relevant works on this context of beta 
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fractional derivative see (Yusuf, et al., 
2019; Yiasir Arafat, et al., 2023; Fiza et 
al., 2024). 

3. METHODOLOGY

In this section, we give a description of the sine-
cosine method which is used to obtain exact 
solutions of partial differential equations. 

3.1 The Sine-Cosine Method 

Consider a nonlinear partial differential equation 
𝑃𝑃�𝑢𝑢, 𝑢𝑢𝑡𝑡,𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑥𝑥𝑥𝑥,𝑢𝑢𝑥𝑥𝑥𝑥 ,𝑢𝑢𝑡𝑡𝑡𝑡 ,⋯𝐷𝐷𝑡𝑡

𝛽𝛽𝑢𝑢,𝐷𝐷𝑥𝑥
𝛽𝛽𝑢𝑢,𝐷𝐷𝑡𝑡𝑡𝑡

2𝛽𝛽𝑢𝑢,

𝐷𝐷𝑥𝑥𝑥𝑥
2𝛽𝛽𝑢𝑢, … � = 0, 0 < 𝛽𝛽 < 1.

(5)                                    
Which describes the dynamical wave solution 
𝑢𝑢(𝑥𝑥, 𝑡𝑡). The steps of the sine-cosine method has 
been proposed in (Wazwaz, 2004) as follows: 
Step 1: To find the travelling wave solution of 
equation (5), we introduce 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑈𝑈(𝑧𝑧),and𝑧𝑧 = 𝜛𝜛𝜛𝜛 − 𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽

.                                                          

(6) 

Step 2: we use the following changes 
𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜔𝜔 𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝜕𝜕2

𝜕𝜕𝑡𝑡2
= 𝜔𝜔2 𝑑𝑑2

𝑑𝑑𝑧𝑧2
,⋯ , 𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜛𝜛 𝑑𝑑

𝑑𝑑𝑑𝑑
,

𝜕𝜕2

𝜕𝜕𝑥𝑥2
= 𝜛𝜛2 𝑑𝑑2

𝑑𝑑𝑧𝑧2
…. 

(7) 
Now, utilizing Eq. (7) transforms the partial 
differential equation Eq. (5) into an ordinary 
differential equation: 
𝑄𝑄(𝑈𝑈,𝑈𝑈′,𝑈𝑈′′, … ) = 0,                                                                       
(8) 
Where 𝑈𝑈′ denotes 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
.  

Step 3: Simplify Eq. (8) by integration if 
possible 
Step 4: The solution will be expressed in the 
following form: 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧),                |𝑧𝑧| ≤ 𝜋𝜋

𝜗𝜗
,                                                              

(9) 
or in the form  
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇(𝜗𝜗 𝑧𝑧), |𝑧𝑧| ≤ 𝜋𝜋

2𝜗𝜗
,                       

(10) 
Where 𝜆𝜆,𝜗𝜗,𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 are parameters to be 
determined. 

Step 5: Hence, the derivatives of Eq. (9) take the 
following form: 
 𝑈𝑈(𝑧𝑧) = 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧),
(11) 
𝑈𝑈𝑛𝑛(𝑧𝑧) = 𝜆𝜆𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝜗𝜗 𝑧𝑧),
(12) 
𝑈𝑈𝑧𝑧𝑛𝑛(𝑧𝑧) = 𝑛𝑛𝑛𝑛𝑛𝑛𝜆𝜆𝑛𝑛 cos(𝜗𝜗 𝑧𝑧) 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−1(𝜗𝜗 𝑧𝑧),
(13) 
𝑈𝑈𝑧𝑧𝑧𝑧𝑛𝑛 (𝑧𝑧) = −𝑛𝑛2𝜗𝜗2𝜇𝜇2𝜆𝜆2𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛(𝜗𝜗 𝑧𝑧) + 𝑛𝑛𝜗𝜗2𝜆𝜆2𝜇𝜇(𝑛𝑛𝑛𝑛 −
1)𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛−2(𝜗𝜗 𝑧𝑧).                                     (14) 
And the derivative of Eq. (10) becomes 
𝑈𝑈(𝑧𝑧) = 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇(𝜗𝜗 𝑧𝑧),
(15) 
𝑈𝑈𝑛𝑛(𝑧𝑧) = 𝜆𝜆𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛(𝜗𝜗 𝑧𝑧),
(16) 
𝑈𝑈𝑧𝑧𝑧𝑧𝑛𝑛 (𝑧𝑧) = −𝑛𝑛2𝜗𝜗2𝜇𝜇2𝜆𝜆2𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−1(𝜗𝜗 𝑧𝑧) + 𝑛𝑛𝜗𝜗2𝜆𝜆2𝜇𝜇(𝜇𝜇 −
1)𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛−2(𝜗𝜗 𝑧𝑧). (17) 
And so on for further derivatives. 

We substitute Eq. (10) to (17) into the 
previously obtained reduced equation Eq. (8), 
balancing the terms of the cosine functions 
when Eq. (10) is used, or balancing the sine 
functions when Eq. (9) is used. Finally, we 
solve the resulting system of algebraic equations 
with the assistance of computerized symbolic 
computation to determine all possible values of 
the parameters 𝝀𝝀,𝝑𝝑,𝒂𝒂𝒂𝒂𝒂𝒂 𝝁𝝁. 

4. APPLICATION

In this section, we utilize the sine-cosine method to 
derive exact solutions for four distinct β-time 
fractional Boussinesq-like equations. 

4.1 The First 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 − Fractional Boussinesq -
like Equation 

We consider The First Time β-Fractional Boussinesq-
like Equation given by 
𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − 𝑢𝑢𝑥𝑥𝑥𝑥 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥)𝑥𝑥 = 0.

(18) 
By applying the following wave transformation: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑧𝑧), 

Where 𝑧𝑧 = 𝜛𝜛𝜛𝜛 − 𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽

,
(19)                                  
Equation (18) reduces to ordinary differential 
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equation: 
𝜔𝜔2𝑢𝑢′′ − 𝜛𝜛2𝑢𝑢′′ − 𝜛𝜛(6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥)′ = 0, 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢′′(𝑧𝑧) −𝜛𝜛(6𝜛𝜛𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) +
𝜛𝜛3𝑢𝑢′′′(𝑧𝑧))′ = 0,   
(20) 
Integrate once 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢′(𝑧𝑧) −𝜛𝜛(6𝜛𝜛𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) +
𝜛𝜛3𝑢𝑢′′′(𝑧𝑧)) = 0,
(21) 
Integrate again 

(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢(𝑧𝑧) −𝜛𝜛�6𝜛𝜛.
𝑢𝑢3

3
+ 𝜛𝜛3𝑢𝑢′′(𝑧𝑧)�

= 0, 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢(𝑧𝑧) − 2𝜛𝜛2𝑢𝑢3(𝑧𝑧) −𝜛𝜛4𝑢𝑢′′(𝑧𝑧) = 0.                                         
(22) 
Eq. (22) is the reduced ordinary differential 
equation. 
Assume that Eq. (22) has a solution in the form 
of 
𝑢𝑢(𝑧𝑧) = 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧),        
(23) 
𝑢𝑢′(𝑧𝑧) = 𝜇𝜇 𝜆𝜆 𝜗𝜗 cos(𝜗𝜗 𝑧𝑧) . 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−1(𝜗𝜗 𝑧𝑧),                  
(24) 
𝑢𝑢′′(𝑧𝑧) = 𝜆𝜆 𝜇𝜇 𝜗𝜗 (−𝜗𝜗 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧)

+ 𝜗𝜗 (𝜇𝜇 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧),
= −𝜆𝜆 𝜇𝜇2𝜗𝜗2 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧) + 𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 −
1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧).
(25)
For the cosine we have
𝑢𝑢(𝑧𝑧) = 𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇(𝜗𝜗 𝑧𝑧),                        
(26)
𝑢𝑢′(𝑧𝑧) = 𝜆𝜆 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇−1(𝜗𝜗 𝑧𝑧).−𝜗𝜗 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧),                                                                    
(27)

= −𝜆𝜆 𝜇𝜇 𝜗𝜗𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇−1(𝜗𝜗 𝑧𝑧)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧), 
𝑢𝑢′′(𝑧𝑧) = −𝜆𝜆 𝜇𝜇2𝜗𝜗2𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇(𝜗𝜗 𝑧𝑧) + 𝜆𝜆 𝜗𝜗2𝜇𝜇 (𝜇𝜇 −
1)𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇−2(𝜗𝜗 𝑧𝑧).
(28)
Substitute Eq. (23) and Eq. (25) in equation Eq.
(22), we have

(𝜔𝜔2 − 𝜛𝜛2) 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2 𝜛𝜛2𝜆𝜆3𝑠𝑠𝑠𝑠𝑠𝑠3𝜇𝜇(𝜗𝜗 𝑧𝑧)
−𝜛𝜛4{−𝜆𝜆 𝜇𝜇2𝜗𝜗2𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧)

+𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧)} = 0,
(29)                                  

(𝜔𝜔2 − 𝜛𝜛2) 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2 𝜛𝜛2𝜆𝜆3𝑠𝑠𝑠𝑠𝑠𝑠3𝜇𝜇(𝜗𝜗 𝑧𝑧)
+ 𝜛𝜛4𝜆𝜆 𝜇𝜇2𝜗𝜗2𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧)

−𝜛𝜛4𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 − 1) 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧) = 0.
(30)                                  
Eq. (30) is fulfilled if the following system of

algebraic equations is satisfied: 
𝜇𝜇 − 1 ≠ 0, 

3 𝜇𝜇 = 𝜇𝜇 − 2, 
−2 𝜛𝜛2𝜆𝜆3 − 𝜛𝜛4𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 − 1) = 0,
(𝜔𝜔2 − 𝜛𝜛2) 𝜆𝜆 + 𝜛𝜛4𝜆𝜆 𝜇𝜇2 𝜗𝜗2 = 0.
Solving the system using Maple, we obtained

𝜇𝜇 = −1, 𝜆𝜆 = ± √𝜛𝜛2−𝜔𝜔2

𝜛𝜛
, 𝜗𝜗 = ± √𝜛𝜛2−𝜔𝜔2

𝜛𝜛2 .
(31) 
Using the cosine method given by Eq. (26) will yield 
the same results. 
Given Eq. (31), the solutions obtained from Eq. (23) 
and Eq. (19) are as follows:  

𝑢𝑢11(𝑥𝑥, 𝑡𝑡) = √𝜛𝜛2−𝜔𝜔2

𝜛𝜛
csc �√𝜛𝜛

2−𝜔𝜔2

𝜛𝜛2 �𝜛𝜛 𝑥𝑥 +
𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
��.

(32) 
And for cosine function, we have 

𝑢𝑢12(𝑥𝑥, 𝑡𝑡) = √𝜛𝜛2−𝜔𝜔2

𝜛𝜛
sec �√𝜛𝜛

2−𝜔𝜔2

𝜛𝜛2 �𝜛𝜛 𝑥𝑥 +
𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
��.

(33) 
Eq. (32) and Eq. (33) are valid only if  𝜛𝜛2 − 𝜔𝜔2 > 0,
𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎  𝜔𝜔2 < 𝜛𝜛2,    𝑖𝑖 = √−1. 
However, for 𝜔𝜔2 > 𝜛𝜛2 we obtain the following 
solutions 

𝑢𝑢13(𝑥𝑥, 𝑡𝑡) = −√𝜛𝜛2−𝜔𝜔2

𝜛𝜛
csch �√𝜔𝜔

2−𝜛𝜛2

𝜛𝜛2 �𝜛𝜛 𝑥𝑥 +
𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
��, (34) 

𝑢𝑢14(𝑥𝑥, 𝑡𝑡) = √𝜛𝜛2−𝜔𝜔2

𝜛𝜛
sech �√𝜔𝜔

2−𝜛𝜛2

𝜛𝜛2 �𝜛𝜛 𝑥𝑥 +
𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�
𝛽𝛽
��.

(35)
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FIGURE 1. The graphical illustration for beta fractional derivative of solution |𝑢𝑢11(𝑥𝑥, 𝑡𝑡)| with 𝜛𝜛 = 2,𝜔𝜔 =
1, 𝑡𝑡 = 1.5, 𝜇𝜇 = 1.(a) 𝛽𝛽 = 0.5, (𝒃𝒃)𝛽𝛽 = 0.75, (𝒄𝒄)𝛽𝛽 = 0.95, (𝒅𝒅)Combined 2Dgraph for distinct values 
of 𝛽𝛽. 

4.2 The Second Time β-Fractional 
Boussinesq-like Equation 
In this section, we investigate the second β-time 
fractional Boussinesq-like equation: 
𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − 𝑢𝑢𝑥𝑥𝑥𝑥 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝐷𝐷𝑡𝑡𝑡𝑡

2𝛽𝛽𝑢𝑢𝑥𝑥)𝑥𝑥 = 0.                                                                    
(36) 
We use the wave transformation 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑧𝑧), 

𝑧𝑧 = 𝜛𝜛𝜛𝜛 + 𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)
�
𝛽𝛽

.
(37) 
Eq. (35) reduces to  
𝜔𝜔2𝑢𝑢′′ − 𝜛𝜛2𝑢𝑢′′ − 𝜛𝜛(6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥)′ = 0,
(38) 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢′′(𝑧𝑧) −𝜛𝜛(6𝜛𝜛𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) +

𝜛𝜛𝜔𝜔2𝑢𝑢′′′(𝑧𝑧))′ = 0,
(39) 
Integrating Eq. (38) with respect to 𝑧𝑧 once, we have 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢′(𝑧𝑧) −𝜛𝜛(6𝜛𝜛𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) +
𝜛𝜛𝜔𝜔2𝑢𝑢′′′(𝑧𝑧)) = 0, 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢′(𝑧𝑧) − 6𝜛𝜛2𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) −
𝜛𝜛2𝜔𝜔2𝑢𝑢′′′(𝑧𝑧) = 0,
(40) 
Integrating Eq. (40) with respect to 𝑧𝑧 again, we 
obtain 
(𝜔𝜔2 − 𝜛𝜛2)𝑢𝑢(𝑧𝑧) − 2𝜛𝜛2𝑢𝑢3(𝑧𝑧) −𝜛𝜛2𝜔𝜔2𝑢𝑢′′(𝑧𝑧) = 0.
(41) 
Now, Eq. (41) is the reduced ordinary differential 
equation.                                                                                              
Substituting Eq. (23) and Eq. (25) into Eq. (41) gives 

(𝜔𝜔2 − 𝜛𝜛2) 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2 𝜛𝜛2𝜆𝜆3𝑠𝑠𝑠𝑠𝑠𝑠3𝜇𝜇(𝜗𝜗 𝑧𝑧)
−𝜛𝜛2𝜔𝜔2{−𝜆𝜆 𝜇𝜇2𝜗𝜗2𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧)

+𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧)} = 0,
(42)

(𝜔𝜔2 − 𝜛𝜛2) 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2 𝜛𝜛2𝜆𝜆3𝑠𝑠𝑠𝑠𝑠𝑠3𝜇𝜇(𝜗𝜗 𝑧𝑧)
+ 𝜛𝜛2𝜔𝜔2 𝜆𝜆 𝜇𝜇2𝜗𝜗2𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧)

−𝜛𝜛2𝜔𝜔2𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 − 1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧) = 0.
(43)
Eq. (43) holds true if the following system of
algebraic equations is satisfied:
𝜇𝜇 − 1 ≠ 0,
3𝜇𝜇 = 𝜇𝜇 − 2,

−2 𝜛𝜛2𝜆𝜆3 = −𝜛𝜛2𝜔𝜔2𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 − 1),
(𝜔𝜔2 − 𝜛𝜛2) = 𝜛𝜛2𝜔𝜔2 𝜆𝜆 𝜇𝜇2𝜗𝜗2.                              
(44) 
 
Solving system Eq. (44), we obtain 

𝜇𝜇 = −1, 𝜆𝜆 = ±
√𝜔𝜔2 − 𝜛𝜛2

𝜛𝜛
,

𝜗𝜗 = ±
√𝜛𝜛2 − 𝜔𝜔2

𝜛𝜛𝜛𝜛
, 

Similar results are also achieved when employing the 
cosine function. 
As a result, the following solutions were derived: 
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𝑢𝑢21(𝑧𝑧) =
√𝜔𝜔2−𝜛𝜛2

𝜛𝜛
csc �√𝜛𝜛

2−𝜔𝜔2

𝜛𝜛 𝜔𝜔
�𝜛𝜛 𝑥𝑥 +

𝜔𝜔
𝛽𝛽
�𝑡𝑡 +
1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� ,𝜔𝜔2 <

𝜛𝜛2, (45) 

𝑢𝑢22(𝑧𝑧) = √𝜔𝜔2−𝜛𝜛2

𝜛𝜛
sec �√𝜛𝜛

2−𝜔𝜔2

𝜛𝜛 𝜔𝜔
�𝜛𝜛 𝑥𝑥 +

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� ,  𝜔𝜔2 < 𝜛𝜛2.      

(46) 
For 𝜔𝜔2 > 𝜛𝜛2 we also obtained the following 
solutions: 

𝑢𝑢23(𝑧𝑧) = −𝑖𝑖 √𝜔𝜔
2−𝜛𝜛2

𝜛𝜛
csch �√𝜔𝜔

2−𝜛𝜛2

𝜛𝜛 𝜔𝜔
�𝜛𝜛 𝑥𝑥 +

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� ,

(47) 

𝑢𝑢24(𝑧𝑧) = √𝜔𝜔2−𝜛𝜛2

𝜛𝜛
sech �√𝜔𝜔

2−𝜛𝜛2

𝜛𝜛 𝜔𝜔
�𝜛𝜛 𝑥𝑥 +

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
��.    

(48) 

4.3 The Third 𝑻𝑻ime 𝜷𝜷 −Fractional Boussinesq -
like Equation 
In this section we study the third time beta-fractional 
Boussinesq- like equation: 
𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − 𝑢𝑢𝑥𝑥𝑥𝑥

𝛽𝛽 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝐷𝐷𝑡𝑡
𝛽𝛽𝑢𝑢𝑥𝑥𝑥𝑥)𝑥𝑥 = 0.

(49) 
Using the travelling wave transformation: 

 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑧𝑧), 

𝑧𝑧 = 𝜛𝜛𝜛𝜛 − 𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)
�
𝛽𝛽

.
Substituting these in Eq. (49) gives 
(𝜔𝜔2 + 𝜛𝜛𝜛𝜛)𝑢𝑢′′(𝑧𝑧) −𝜛𝜛�6𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) −
𝜛𝜛2𝜔𝜔𝑢𝑢′′′(𝑧𝑧)�

′
= 0,

FIGURE 2. The graphical illustration for beta fractional derivative of solution |𝑢𝑢21(𝑥𝑥, 𝑡𝑡)| 
with 𝜛𝜛 = 2,𝜔𝜔 = −3, 𝑡𝑡 = 1.5, 𝜇𝜇 = −1.(a) 𝛽𝛽 = 0.5, (𝒃𝒃)𝛽𝛽 = 0.75, (𝒄𝒄)𝛽𝛽 =
0.95, (𝒅𝒅)Combined 2Dgraph for distinct values of 𝛽𝛽. 
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(50) 
Integrating twice and setting the constants of 
integration to zero, we obtain: 
(𝜔𝜔2 + 𝜛𝜛𝜛𝜛)𝑢𝑢(𝑧𝑧) − 2𝜛𝜛2𝑢𝑢3(𝑧𝑧) + 𝜛𝜛3𝜔𝜔𝑢𝑢′′(𝑧𝑧) =
0.
(51) 
Assuming that Eq. (51) has a solution in the 
form: 

𝑢𝑢(𝑧𝑧) = 𝜆𝜆 sin𝜇𝜇(𝜗𝜗 𝑧𝑧), 
Where 𝜔𝜔 and 𝜛𝜛 are constants, substituting Eq. 
(23) and Eq. (25) into Eq. (51) yields:
(𝜔𝜔2 + 𝜛𝜛𝜛𝜛)𝜆𝜆 sin𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2𝜛𝜛2(𝜆𝜆 sin𝜇𝜇(𝜗𝜗 𝑧𝑧))3 +
𝜛𝜛3𝜔𝜔�−𝜆𝜆 𝜇𝜇2𝜗𝜗2 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇(𝜗𝜗 𝑧𝑧) + 𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 −
1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧)� = 0,                           
(52)               
(𝜔𝜔2 + 𝜛𝜛𝜛𝜛)𝜆𝜆 sin𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2𝜛𝜛2𝜆𝜆3 sin3𝜇𝜇(𝜗𝜗 𝑧𝑧) −
𝜛𝜛3𝜔𝜔𝜔𝜔𝜇𝜇2𝜗𝜗2 sin𝜇𝜇(𝜗𝜗 𝑧𝑧) + 𝜛𝜛3𝜔𝜔𝜔𝜔𝜔𝜔𝜗𝜗2(𝜇𝜇 −
1) sin𝜇𝜇−2(𝜗𝜗 𝑧𝑧) = 0.                                                                     
(53) 
By equating the exponents and coefficients of 
each pair of sine functions to zero, we derive the 
following system of algebraic equations: 

𝜇𝜇 − 1 ≠ 0, 
3𝜇𝜇 = 𝜇𝜇 − 2, 

(𝜔𝜔2 + 𝜛𝜛𝜛𝜛)𝜆𝜆 − 𝜛𝜛3𝜔𝜔𝜔𝜔𝜇𝜇2𝜗𝜗2 = 0,                          
(54) 

−2𝜛𝜛2𝜆𝜆3 + 𝜛𝜛3𝜔𝜔𝜔𝜔𝜔𝜔𝜗𝜗2(𝜇𝜇 − 1) = 0.
Solving the system Eq. (54) yields 

𝜇𝜇 = −1, 𝜆𝜆 = ± √𝜔𝜔2+𝜔𝜔𝜔𝜔
𝜛𝜛

, 𝜗𝜗 = ± �𝜛𝜛(𝜔𝜔+𝜛𝜛)
𝜛𝜛2 .

(55) 
Consequently, for 𝜛𝜛𝜛𝜛 + 𝜛𝜛2 > 0, we obtained the 
following solutions 

𝑢𝑢31(𝑧𝑧) = √𝜔𝜔2+𝜔𝜔𝜔𝜔
𝜛𝜛

csc ��𝜛𝜛(𝜔𝜔+𝜛𝜛)
𝜛𝜛2 �𝜛𝜛 𝑥𝑥 −

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� ,

(56) 
and 

𝑢𝑢32(𝑧𝑧) = √𝜔𝜔2+𝜔𝜔𝜔𝜔
𝜛𝜛

sec ��𝜛𝜛(𝜔𝜔+𝜛𝜛)
𝜛𝜛2 �𝜛𝜛 𝑥𝑥 −

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� .

(57) 
However, for 𝜛𝜛𝜛𝜛 + 𝜛𝜛2 < 0, gives the following 
solutions 

𝑢𝑢33(𝑧𝑧) = −𝑖𝑖 √−𝜔𝜔
2−𝜔𝜔𝜔𝜔
𝜛𝜛

csch ��−𝜛𝜛(𝜔𝜔+𝜛𝜛)
𝜛𝜛2 �𝜛𝜛 𝑥𝑥 −

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� , (58) 

and 

𝑢𝑢34(𝑧𝑧) = √−𝜔𝜔2−𝜔𝜔𝜔𝜔
𝜛𝜛

sech ��−𝜛𝜛(𝜔𝜔+𝜛𝜛)
𝜛𝜛2 �𝜛𝜛 𝑥𝑥 −

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� . (59)
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4.4 The Fourth Time 𝜷𝜷 −Fractional 
Boussinesq- like Equation 
In this section we study the fourth time beta-
fractional Boussinesq like equation: 
𝐷𝐷𝑡𝑡𝑡𝑡
2𝛽𝛽𝑢𝑢 − (6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥

𝛽𝛽 )𝑥𝑥 = 0.
(60) 
Using the travelling wave transformation: 

 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑧𝑧), 

𝑧𝑧 = 𝜛𝜛𝜛𝜛 − 𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)
�
𝛽𝛽

.
Substituting these in Eq. (60) becomes 
𝜔𝜔2𝑢𝑢′′(𝑧𝑧) −𝜛𝜛(6𝑢𝑢2𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥)′ = 0,                                                                   
(61) 

𝜔𝜔2𝑢𝑢′′(𝑧𝑧) −𝜛𝜛(6𝑢𝑢2𝜛𝜛𝑢𝑢′(𝑧𝑧) + 𝜛𝜛3𝑢𝑢′′′(𝑧𝑧)′ = 0,
(62) 
Integrating Eq. (62) once, we have 
𝜔𝜔2𝑢𝑢′(𝑧𝑧) −𝜛𝜛(6𝜛𝜛𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) + 𝜛𝜛3𝑢𝑢′′′(𝑧𝑧) = 0,                                                                        
(63) 

𝜔𝜔2𝑢𝑢′(𝑧𝑧) − 6𝜛𝜛2𝑢𝑢2(𝑧𝑧)𝑢𝑢′(𝑧𝑧) −𝜛𝜛4𝑢𝑢′′′(𝑧𝑧) = 0,
(64) 
Integrating Eq. (64) again gives 
𝜔𝜔2𝑢𝑢(𝑧𝑧) − 2𝜛𝜛2𝑢𝑢3(𝑧𝑧) −𝜛𝜛4𝑢𝑢′′(𝑧𝑧) = 0.
(65) 
Where 𝜛𝜛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔 are constants. Substituting Eq. (23) 
and Eq. (25) into Eq. (65) gives 
𝜔𝜔2𝜆𝜆 sin𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2𝜛𝜛2𝜆𝜆3 sin3𝜇𝜇(𝜗𝜗 𝑧𝑧) −
𝜛𝜛4�−𝜆𝜆 𝜇𝜇2𝜗𝜗2 sin𝜇𝜇(𝜗𝜗 𝑧𝑧) + 𝜆𝜆 𝜇𝜇 𝜗𝜗2(𝜇𝜇 −
1)𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇−2(𝜗𝜗 𝑧𝑧)� = 0,
(66)
𝜔𝜔2𝜆𝜆 sin𝜇𝜇(𝜗𝜗 𝑧𝑧) − 2𝜛𝜛2𝜆𝜆3 sin3𝜇𝜇(𝜗𝜗 𝑧𝑧)

+ 𝜛𝜛4𝜆𝜆 𝜇𝜇2𝜗𝜗2 sin𝜇𝜇 𝜗𝜗 𝑧𝑧)
−𝜛𝜛4𝜆𝜆𝜆𝜆𝜗𝜗2(𝜇𝜇 − 1) sin𝜇𝜇−2(𝜗𝜗 𝑧𝑧) = 0.

(67) 
By setting the exponents and coefficients of each pair 
of sine functions to zero, we derive the following 
system of algebraic equations: 

FIGURE 3. The graphical illustration for beta fractional derivative of solution |𝑢𝑢31(𝑥𝑥, 𝑡𝑡)| with 𝜛𝜛 = 2,𝜔𝜔 = 1, 𝑡𝑡 = 1.5,
𝜇𝜇 = −1.(a) 𝛽𝛽 = 0.5, (𝒃𝒃)𝛽𝛽 = 0.75, (𝒄𝒄)𝛽𝛽 = 0.95, (𝒅𝒅)Combined 2D graph for distinct values of 𝛽𝛽. 
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𝜇𝜇 − 1 ≠ 0, 
3𝜇𝜇 = 𝜇𝜇 − 2, 

𝜔𝜔2𝜆𝜆 + 𝜛𝜛4𝜆𝜆 𝜇𝜇2𝜗𝜗2 = 0,
(68) 

−2𝜛𝜛2𝜆𝜆3 − 𝜛𝜛4𝜆𝜆𝜆𝜆𝜗𝜗2(𝜇𝜇 − 1) = 0.
Upon solving the system of equations Eq. (68), 
we obtain: 
𝜇𝜇 = −1,    𝜆𝜆 = ± 𝜔𝜔

𝜛𝜛
,    𝜗𝜗 = ± 𝜔𝜔𝜔𝜔

𝜛𝜛2.
(69) 
Consequently, we obtained the following 
solutions 

𝑢𝑢41(𝑧𝑧) = 𝜔𝜔
𝜛𝜛

csc �𝜔𝜔𝜔𝜔
𝜛𝜛2 �𝜛𝜛𝜛𝜛 −

𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

𝛤𝛤(𝛽𝛽)�
𝛽𝛽
�� ,                                                                              

(70) 
and 
𝑢𝑢42 = 𝜔𝜔

𝜛𝜛
sec [𝜔𝜔𝜔𝜔

𝜛𝜛2 �𝜛𝜛𝜛𝜛 −
𝜔𝜔
𝛽𝛽
�𝑡𝑡 + 1

Γ(𝛽𝛽)�)  �.                                                                     
(71) 

5 PHYSICAL EXPLANATION 

In this section, we generated various types of exact 
solutions for Equations (1)-(4) using the Sine-cosine 
approach. These solutions are in the form of 
trigonometric and hyperbolic functions. 
 Fig 1. (a)-(c) Depicts modulus of solutions for 
|𝑢𝑢11(𝑥𝑥, 𝑡𝑡)|, Eq. (32) with various parameter values, 
𝜛𝜛 = 2, 𝜔𝜔 = 1, 𝜇𝜇 = −1, 𝜆𝜆 = √3

2
, 𝜗𝜗 = √6

4
, as well as 

the beta  fractional order values, 𝛽𝛽 = 0.5 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎),
𝛽𝛽 = 0.75 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑏𝑏)  𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 0.95 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑐𝑐). We 
observed multiple solitons with varying heights and 
positions. (d) Shows the effect of beta fractional 
order values in combined 2D wave profile with  𝛽𝛽 =
0.5, 0.75, 0.95  𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 = 1.5. We observed the wave 
propagates in the x-direction for increasing values of 

FIGURE 4. The graphical illustration for beta fractional derivative of solution |𝑢𝑢41(𝑥𝑥, 𝑡𝑡)| with 𝜛𝜛 = 5,𝜔𝜔 =
3, 𝑡𝑡 = 1.5, 𝜇𝜇 = −1.(a) 𝛽𝛽 = 0.5, (𝒃𝒃)𝛽𝛽 = 0.75, (𝒄𝒄)𝛽𝛽 = 0.95, (𝒅𝒅)Combined 2D graph for distinct 
values of 𝛽𝛽. 
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𝛽𝛽.  For specific values of the parametres 𝜛𝜛 = 2,
𝜔𝜔 = −3, 𝜇𝜇 = −1, 𝜆𝜆 = √5

2
,   𝜗𝜗 = −√5

6
𝐼𝐼, the 3D 

wave profile of the solution |𝑢𝑢2,1(𝑥𝑥, 𝑡𝑡)| which 
depicts  periodic solitary wave corresponding to 
Fig 2.(a)-(c) with different beta values 𝛽𝛽 =
0.5 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎), 𝛽𝛽 = 0.75 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑏𝑏)  𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 =
0.95 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑐𝑐).. Moreover, the combined 2D 
graph is shown in Fig. 2(d) with distinct beta 
values, 𝛽𝛽 = 0.5, 0.75, 0.95 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 = 1.5. 
Fig. 3(a)-(c) represents the periodic wave 
structure of the solution |𝑢𝑢3,1(𝑥𝑥, 𝑡𝑡)| for the 
parameter values = 2, 𝜔𝜔 = 1, 𝜇𝜇 = −1, 𝜆𝜆 =
√3
2

,   𝜗𝜗 = √6
4

 , with  𝛽𝛽 = 0.5 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎), 𝛽𝛽 =
0.75 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑏𝑏)  𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 0.95 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑐𝑐)and the 2D 
graph is plotted in Fig. 3(d) with beta values 
𝛽𝛽 = 0.5, 0.75, 0.95 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 = 1.5, which shows 
the effect of beta fractional order. Fig. 4(a)-(c) 
illustrates the 3D wave structure of the solution 
|𝑢𝑢4,1(𝑥𝑥, 𝑡𝑡)| representing singular soliton solution 
with parameter values 𝜛𝜛 = 5, 𝜔𝜔 = 3, 𝜇𝜇 = −1,
𝜆𝜆 = 3

5
, 𝜗𝜗 = 3/25, and for specific values of the 

beta: 𝛽𝛽 = 0.5 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑎𝑎), 𝛽𝛽 =
0.75 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑏𝑏)  𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 0.95 𝑓𝑓𝑓𝑓𝑓𝑓 (𝑐𝑐).  The 2D 
combined wave profiles are shown in Fig. 4(d) 
for 𝛽𝛽 = 0.5, 0.75, 0.95 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 = 1.5 to show 
the effect of beta fractional order. From the 
above discussion, it is obvious that the sine-
cosine approach can provide different types of 
wave structures to fractional Boussinesq-like 
equations with beta derivative for various values 
of parameters.  
The obtained solutions derived through this 
method play a crucial role in understanding the 
structure and dynamic behavior of the problem 
at hand. The method proposed in this work is 
straightforward, dependable, and effective, with 
the potential to be extended for studying and 
solving numerous other nonlinear evolution 
equations across various scientific and 
engineering disciplines. 

CONCLUSION 
In this paper, we employed the sine-cosine 
method to obtain travelling wave solutions for 
four distinct Beta fractional Boussinesq-like 
equations. The obtained results include singular 

traveling wave soliton solution, periodic soliton 
solutions and multiple soliton solution which involve 
trigonometric functions, hyperbolic functions and 
complex solutions as well. We examined all 
constraints that guarantee the existence of these new 
exact solutions. The results obtained from this study 
are anticipated to be highly beneficial in numerous 
areas of mathematical physics, costal engineering and 
applied mathematics, including fluid dynamics, 
nonlinear optics, plasma physics, and other related 
fields. 
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